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Tunneling times through a barrier with inelasticity
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Abstract. Tunneling delay times of wavepackets in quantum mechanical penetration of rectangular barriers
have long been known to show a perplexing independence with respect to the width of the barrier. This
also has relevance to the transmission of evanescent waves in optics. Some authors have claimed that in
the presence of absorption or inelastic channels (which they model by taking a complex barrier potential)
this effect no longer exists, in that the time delay becomes proportional to the barrier width. Taking the
point of view that complex potentials imply non-Hermitian Hamiltonians and are as such fraught with
conceptual pit-falls particularly in connection to problems involving time evolution, we have constructed
a two-channel model which does not suffer from such limitations in order to examine this issue. We find
that the conclusions arrived at by the earlier authors need to be more precisely specified.

PACS. 03.65.Xp Tunneling, traversal time, quantum Zeno dynamics

QICS. 02.90.+f Fundational issues of quantum mechanics

1 Introduction

The question of tunneling time and the analogous situ-
ation of evanescent waves in optics, have in recent years
attracted considerable attention. Interest in such matters,
however, go back to the forties and fifties of the last cen-
tury as witnessed by Eisenbud’s Ph.D dissertation [1] with
E.P. Wigner at Princeton in 1948 and Wigner’s own pa-
per [2] in 1955. David Bohm’s book on Quantum The-
ory [3] published in 1951 also sheds light on such issues.

In the present study we shall focus our efforts on
one particular aspect of tunneling phenomenon: the
counter intuitive conclusion that for a sufficiently opaque
barrier tunneling delays are independent of the bar-
rier width, a phenomenon currently referred to as the
Hartman [4]-Fletcher [5] effect. By the opaque condition,
we imply that the mean energy of the incident wave packet
is much smaller than the height of the potential barrier.
The tunneling time (τ) is defined in this context as the
time taken by the peak of the incident wave-packet to tra-
verse the classically forbidden region and to emerge as the
transmitted wave-packet.

Consider the evolution of an incident localized wave-
packet described by∫

Gk0(k) exp(ikx− iEt/�)dk
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where Gk0(k) is a normalised function of k (say a
Gaussian) peaked about the mean momentum �k0. If the
wave-packet is allowed to evolve freely the peak would
travel with a velocity �k0/m. However with a barrier
present, an incident plane wave

1√
2π
eikx−iEt/�

(corresponding to a particle of energy E = �
2k2/2m,

where k is the wave vector) would after transmission
through it emerge as

1√
2π
aT (k)ei(kx−Et)/�

where aT = |aT |eiδ is the transmission amplitude (with δ
its associated phase). Accordingly, the transmitted wave-
packet would be

∫
Gk0 (k)|aT |eikx−iEt/�+iδ(k)dk.

Suppose for concreteness, we consider a barrier between
x = 0 and x = L, then the time (τ) at which the peak
of the packet will emerge from the barrier at x = L will
be given using the method of stationary phase by d[kL−
Eτ/� + δ(k)]/dk = 0 or

τ = �
dδ

dE
+

L

(�k/m)
. (1)
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All quantities are to be evaluated at the peak momen-
tum �k0 and the corresponding energy �

2k2
0/2m. For no-

tational brevity, we suppress the subscript 0. In our dis-
cussion, equation (1) will be taken to be a measure of the
tunneling time.

Taking the specific case of a rectangular barrier,

V (x) = V0 for 0 ≤ x ≤ L, (2a)
= 0 elsewhere, (2b)

we solve the Schrödinger equation corresponding to sta-
tionary states of energy E,

[
− �

2

2m
d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (3)

with the required condition describing reflection and
transmission, we have on the two sides of the barrier

ψ(x) = eikx + aR(k)e−ikx for x < 0 (4a)

ψ(x) = aT (k)eikx for x > L, (4b)

where aR(k) and aT (k) are the reflection and transmis-
sion amplitudes whose square moduli give the respective
coefficients. The solution within the barrier is given by,

ψ(x) = Aeqx +Be−qx (4c)

with q2 = 2m(V0−E)/�2. We may as usual proceed to de-
termine A, B, aR and aT by matching ψ(x) and dψ(x)/dx
at the boundaries (x = 0 and x = L) to obtain

A =
−(1 + iq

k ) exp(−qL)

(1 + q2

k2 )sinh(qL)
(5a)

B =
(1 − iq

k ) exp(qL)

(1 + q2

k2 )sinh(qL)
(5b)

and

aT =
4ik

q exp(−ikL)

exp(−qL)(1 + ik
q )2 − exp(qL)(1 − ik

q )2
(6)

and accordingly we arrive at the phase-difference δ, viz.,

δ = tan−1

[
(q2 − k2)

2qk
tanh(qL)

]
− kL, (7)

and using equation (1), we have

τ = �
d

dE
tan−1

[
k2 − q2

2qk
tanhqL

]
, (8)

where the cancellation (in the expression for the time de-
lay) of the contribution arising from the term −kL in δ
physically represents the time the wave-packet would have
taken to traverse the distance from x = 0 to x = L if
the potential were absent. It is also understood that we
must evaluate the delay at the energy E0. We suppress as
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Fig. 1. The tunnel time (τ ) is shown as a function of barrier
width (L) for two values of E/V0 namely 0.1 (dashed curve)
and 0.75 (solid curve).

mentioned earlier the subscript zero for notational conve-
nience. The tunneling time τ as given by equation (8) is
plotted as a function of the barrier width L for two val-
ues of V0/E and shown in Figure 1. As must be the case,
τ → 0 as L → 0. But what is more significant is that as
L → ∞ note that tanh(qL) → 1 and tunneling time τ
become independent of the length L of the barrier. This
is the counter-intuitive Hartman [4] Effect. The saturated
or asymptotic value of τ is given by

τasymp =
�√

E(V0 − E)
= 2

m

�k

1
q
, (9)

that is, twice the time taken to traverse the decay dis-
tance 1/q in the barrier region if the particle is moving
with its free velocity �k/m. Explicitly the expression for τ
is given by

τ =
g

1 + g2

(
m

�q2
− 4m

�(q2 − k2)
− m

�k2

− mL

�q2sinh(qL)cosh(qL)

)

where g = (q2 − k2)tanh(qL)/2qk.
It is clearly evident both from the graph and the ex-

pression for τ that for large L, τ is independent of L and
hence it attains a saturation value. This is what has been
known as the Hartman [4]-Fletcher [5] effect for decades.
What needs to be emphasized is that the tunneling time
approaches the saturation value in two ways depending on
the sign of k2 − q2 = 2m(2E − V0)/�2. For k2 − q2 > 0
(i.e., E > V0/2) it monotonically increases to reach the
saturation value and for k2 − q2 < 0 (i.e., E < V0/2) it
reaches the saturation value from above (there is a hump
before it attains saturation). Keeping the next to leading
term for large L shows the approach to asymptotia viz.,

τ � τasymp + 8L
(

1
�k/m

) [
E(V0 − 2E)

V 2
0

]
e−2qL. (10)

It is evident from the expression above that there is a
exponential approach to the asymptotic limit from below
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if E < V0/2 (viz. slope is positive with respect to L) and
from above for E > V0/2.

The position of the maximum of the hump (L0) in the
latter case is given by

L0 =
1
4

(
�q

m

) (
�

E

)
10E2 − 9V0E + V 2

0

(2E − V0)(V0 − E)
. (11)

2 Hartman effect in absorbing media

For investigating the Hartman [4]-Fletcher [5] effect in
presence of an absorbing media, some authors notably
Delgado et al. [6] and Raciti and Salesi [7] phenomeno-
logically introduced an imaginary part to the potential in
order to describe absorption. This is in the spirit of the
optical model which is often invoked in nuclear physics
when there are inelastic channels. However, Delgado et al.
do consider the problem from a two-channel point of view
as well. The relative phase-shift between the transmitted
and the incident wave-packet in such a situation is ob-
tained by simply putting the complex potential form in
place of V0 in q and inserting it in equation (7). If the
potential is given by V = V0(1 − iλ) within the range L
and zero elsewhere, then the transmission coefficient (aT )
is given by

aT =
4ik

q e
ikL

e−qL(1 + ik
q )2 − eqL(1 − ik

q )2
. (12)

Hence in the large L limit, aT will take the form of

aT =
4ik

q e
ikL

eqL(1 − ik
q )2

. (13)

For complex potentials and taking only the first order term
in λ, it is seen that

q = q0

(
1 − iλV0

2(V0 − E)

)

where q0 = [2m(V0 − E)/�2]1/2. Hence, we have

1
q
≈ 1
q0

(
1 +

iλV0

2(V0 − E)

)

which is readily expressed in a polar form as

1
q
≈

√(
1
q0

)2

+
(

λV0

2q0(V0 − E)

)2

e
itan−1

(
λV0

2(V0−E)

)
. (14)

Hence aT in the presence of the complex potential will be

aT =
− 4ik

q0

(
1 + iλV0

2(V0−E)

)
e
−ikL−q0

(
1− iλV0

2(V0−E)

)
L

[
1 − ik

q

(
1 + iλV0

2(V0−E)

)]2 . (15)

The only L dependence in the phase-shift comes from the
numerator of equation (15) and the dependence is of the
form

−kL+
q0λV0

2(V0 − E)
L.

Hence the tunneling time τ for large L is given by

τ → λV0

2(V0 − E)
k

q0
L+ ξ (16)

where ξ is the L-independent factor that comes from the
denominator of equation (15). It is evident from the ex-
pression of τ that the tunneling time for large L is not in-
dependent of L and hence we no longer have the Hartman-
Fletcher effect even for weak absorption (small λ). Optical
experiments by Nimtz, Spieker and Brodowsky [8] con-
firms the absence of the Hartman-Fletcher effect only for
strong absorption and the absence of this effect in the
presence of weak absorption is not claimed.

Furthermore, one may express doubts regarding the
conclusion on tunneling times in the presence of inelas-
tic channels based on the phenomenological device of in-
troducing complex potentials (through the paradigm of
the optical model) particularly when we are dealing with
questions regarding time evolution. Non-unitary time-
evolution using a non-hermitian Hamiltonian could be
questionable. If randomness or disorder in the system is in-
voked then one must use a density matrix approach to the
entire problem. We put forward a two-channel formulation
for this problem and analyze the matter of tunneling time
in this format where unitarity is properly maintained.

To obtain a simple realisation of such a situation, con-
sider the elastic scattering of a particle by a target sys-
tem describable in terms of a rectangular potential V0 of
width L. Suppose that the target has an excited state
of energy ∆ above its ground state. When the projec-
tile energy E is above the threshold ∆ then, as well as
the elastic scattering, an inelastic process is also possible.
One may however describe the situation in terms of two
channels, the elastic and the inelastic. The latter chan-
nel corresponds to the scattering of the projectile of en-
ergy E −∆ from the excited state of the system through
a rectangular potential Vi, say, of same width L, while
the two channels are coupled to each other via a poten-
tial Vc, taken, for simplicity, to be that of same width L.
With ψ(x) and φ(x) denoting the wave-functions in the
elastic and the inelastic channels respectively, the system
is governed by the coupled Schrödinger equations

[
− �

2

2m
d2

dx2
+ V0

]
ψ(x) + Vcφ(x) = Eψ(x) (17a)

[
− �

2

2m
d2

dx2
+ Vi

]
φ(x) + Vcψ(x) = (E −∆)φ(x). (17b)

The wave-functions for the elastic channel and the inelas-
tic channel in the region x < L are given as

ψ(x) = eikx + aR(k)e−ikx (18a)

φ(x) = Re−ik′x (18b)

where k2 = 2mE/�2 and k′2 = 2m(E −∆)/�2 while
aR(k) andR are the respective reflection amplitudes in the
elastic and inelastic channel. Similarly the wave-functions
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in the region x > L are

ψ(x) = aT (k)eikx (19a)

φ(x) = Teik′x (19b)

where aT and T are the respective transmission ampli-
tudes in the elastic and inelastic channels. Note here that
naturally there are two outgoing waves to the left and to
the right due to the additional inelastic channel as physi-
cally required. The wave-functions in the two channels in
the intermediate region are

ψ(x) = (Beαx + Ce−αx) sin(θ/2)

+ (Feβx +Ge−βx) cos(θ/2) (20a)

φ(x) = (Beαx + Ce−αx) cos(θ/2)

− (Feβx +Ge−βx) sin(θ/2) (20b)

where

α2 =
[
V0 − E +

V0 − Vi −∆

2
(secθ − 1)

]
(21a)

β2 =
[
V0 − E +∆− V0 − Vi −∆

2
(secθ − 1)

]
(21b)

θ = tan−1

(
2Vc

V0 − Vi −∆

)
. (21c)

The phase difference between the incident and the trans-
mitted waves in the elastic channel can be easily computed
from aT evaluated by demanding the continuity of the
wave-function and its derivative at the boundaries. Hence
the tunneling time in the elastic channel can be expressed
as a function of α and β. The phase difference δ is given as

δ = tan−1

(
U −X − Y

Z

)
(22)

where

U = αβ(k2 − q2) [cosh(αL)cosh(βL) − 1]
× (cos2θ − 1)

X =
[
2(α2 − β2)(k2 − q2) cos θ − 2(α2 + β2)(k2 − q2)

]
× sinh(αL)sinh(βL)

Y =
[
4(α2 + β2)(k2 − q2) sin2 θ − 4(k2q2 − α2β2)

]
× sinh(αL)sinh(βL)

Z = 4αk(β2 + q2)(1 + cos θ)cosh(αL)sinh(βL)

+ 4βk(α2 + q2)(1 − cos θ)cosh(βL)sinh(αL).

The two channels, being coupled by a coupling poten-
tial Vc, must emit evanescent wave-functions inside the po-
tential barriers of both channels for the Hartman-Fletcher
effect to be present in the elastic channel. As a check,
if we put Vc = 0, the inelastic channel should decouple
and δ should collapse to the old expression of equation (7).
Putting Vc = 0 and hence θ = 0, we indeed get back the
previous expression for δ as in equation (7).
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Fig. 2. Tunneling time vs. barrier width for V0 = 1.0, Vi =
1.0, Vc = 0.1, E = 0.5 and δ = 0.2. The presence of the
Hartman-Fletcher effect is clearly evident.

To investigate the presence of the Hartman-Fletcher
effect in the elastic channel, if we allow L to be large in
equation (22) along with the constraint that α and β be
real, we see that δ in leading order becomes L independent,
viz.,

δ = tan−1

(
U1 −X1 − Y1

Z1

)
(23)

where

U1 = αβ(k2 − q2)(cos2θ − 1),

X1 = 2(α2 − β2)(k2 + q2)cosθ − 2(α2 + β2)(k2 − q2),

Y1 = (α2 + β2)(k2 − q2)sin2θ − 4(k2q2 − α2β2),

Z1 = 4αk(β2 + q2)(1 + cosθ) + 4βk(α2 + q2)(1 − cosθ).

Hence, the time delay (τ = �dδ/dk) will be indepen-
dent of the width L. We conclude that one observes the
Hartman-Fletcher effect whenever the wave-function is
evanescent inside both the elastic and inelastic channel,
i.e., when both α and β are real. Since

αβ =
√

(Vi − E +∆)(V0 − E) − V 2
c , (24)

one observes the Hartman-Fletcher effect when

(Vi − E −∆)(V0 − E) > V 2
c . (25)

This is supported by the results of explicit numerical cal-
culation as depicted in Figure 2 which clearly shows the
presence of the Hartman-Fletcher effect even in the pres-
ence of a coupling potential provided the parameters re-
spect the condition given by equation (25).

It is relevant to confine our attention to the region
of parameter space where the elastic channel is ‘opaque’,
viz. E � V0. If now the inelastic channel is such that
propagation therein is non-evanescent, i.e., (E −∆) > Vi,
then β in the expression for δ given by equation (22) will
be purely imaginary. Due to this, the phase difference δ
will become L dependent even for large L. It is clear that
when we put β = i|β| in the expression of phase difference
in equation (22) and take the limit of large L, we get

δ = tan−1

(
U2 −X2 − Y2

Z2

)
(26)
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where

U2 = α|β|(k2 − q2)(cos2θ − 1)cos(|β|L)

X2 = 2(α2 + |β|2)(k2 + q2)cosθ

− 2(α2 − |β|2)(k2 − q2)sin(|β|L)

Y2 = (α2 − |β|2)(k2 − q2)sin2θ

− 4(k2q2 + α2|β|2)sin(|β|L)

and

Z2 = 4αk(−|β|2 + q2)(1 + cosθ)sin(|β|L)

+ 4|β|k(α2 + q2)(1 − cosθ)cos(|β|L). (27)

Consequently, the tunneling time for this case will have L
dependence even for large L, which reflects the fact that
the Hartman-Fletcher effect is absent in this regime.

We have thus demonstrated that the independence of
the tunneling time with respect to the width (L) of a bar-
rier for a real potential with large L, claimed to be violated
if inelastic channels are present, is a statement which needs
to be qualified. We show that if instead of trying to capture
inelasticity through the device of a complex potential, we

treat the process through a multichannel formalism (more
appropriate for the study of time evolution as compared
to approaches using non-Hermitian Hamiltonians), then
the outcome depends on specific details of the channels
and the strength of the coupling between them.

We are grateful to Prof. H.S. Mani of The Institute of Mathe-
matical Sciences, Chennai for useful discussions.

References

1. L. Eisenbud, Ph.D. dissertation, Princeton University, 1948
2. E.P. Wigner, Phys. Rev. 98, 145 (1955)
3. D. Bohm, Quantum Theory (Dover Publications)
4. T.E. Hartman, J. Appl. Phys. 33, 3427 (1962)
5. J.R. Fletcher, J. Phys. C 18, L55 (1985)
6. F. Delgado, G. Muga, A. Rushhaupt, Phys. Rev. A 69,

022106, 2004
7. F. Raciti, G. Salesi, J. Phys. France 4, 1783 (1994)
8. G. Nimtz, Proceedings of the Erice International Course:

“Advances in Quantum Mechanics”, 1994; G. Nimtz, H.
Spieker, H.M. Brodowsky, “Tunneling with Dissipation”,
preprint


